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Introduction

Space Manipulators for Debris Removal

The operations may be divided into 3 stages:

» Stage (l): Free-space manipulator arm motion to aim for grasping the target
(position control)

Free-flyer’s position/base stability control by other mounted manipulators
Reaction Wheels/Thrusters deployed for attitude control

» Stage (lI): Transitional contact dynamics and passivation of target to grapple and remove.

For grasping, hybrid position/force control and impedance control are most popular
methods.

» Stage (lI1): On-orbit Servicing Operations (e.g., peg-in-hole task)

Hybrid position/force control, as option.

Impedance control (adopted) — hybrid position/force control does not take into consideration
the impedance effect between the environment and the robot end effector.
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Introduction

Feedback Control Problem in Space Manipulation

Learning Signal:
Actual Trajectory & Applied Torques

Tracking desired trajectory by — o
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deploying feedback control to reject the

modeling errors of the dynamics T=D(6)8 +(6,6) + G(6)

Feed-back Actual
Torques Trajectory
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But tracking is only feasible with accurate model of the inverse dynamics of
the system

Trade-off between the compliancy and reactiveness of the controller against
accuracy, as effort is being made to tune the gains (higher)

Machine learning methods have been explored that can learn and improve
this inverse dynamics approach



Problem Statement: Why Robotic Manipulation

Approach?

» Only robotic manipulation is flexible enough to deal with both
large and small debris

» Harpoons and nets generate complex uncontrollable dynamic interactions st 4 AR

==

» Free-flyer spacecraft mounted with dexterous manipulators will
provide controlled interaction with target

Ellery, A. An Introduction to Space Robotics,
Praxis— Springer Series on Astronomy and

» Robotic manipulator offers possibility for re-use and on-orbit servicing Space Sciences, 2000.

» Possible to exhibit human-like tactility in robotic grasping of space debris?

» Force control modeling to achieve adaptable and compliant behavior - partially known
payload dynamics at times



The Problem of Space Manipulators

Kinematics of Space-based Robot

» The final equation of space robot’s position kinematics
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» The substituted terms (pre-calculated direct substitution) i o
» Space-based environmental factors/forces are negligible

» Fundamentals of transfer learning suggest it should generalize efficiently from earth to space
via pre-trained networks, both with similar multi-dimensional parabolic and kinematics.



Bio-Inspired Predictive Feedforward

Brain/Human Level Manipulation

Desired Output

An efference copy of the motor control signal is ey ControlSigna

typically transmitted to an emulator (input-output) ] RS

The efference copy of the motor commands then
produces a feedforward error compensation Efference copy

of control signal

Biomimetically, a categorized neural network

g

Body

Desired Output
—

Emulator

system in any control architecture can imitate Feedforward from Emulator

this function of the motor cortex

There is a time delay of 40-60ms feeding back the error between the
actual motor outputs and the commanded motor input

Explore predictive neural networks as forward model by adopting input-output models
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Bio-Inspired Predictive Feedforward

NeuralNet Feedforward Approach

Traditional control (with feedback signals from sensors) DH: q > 6,6,6
has delays which generate instabilities (and high gains) !
T = D(B)?' +€(6,6) + G(6)
We developed at first neural network models capable of T (desired) as the nput Inverse model
predicting forward trajectory variables (67, 6r7, 6yf) N T \__é R b )
from efference (desired) torque NNet Mode! | — 4
6 =D"O)|r—-c(,6)-GO)] 6 1]
P o
Multiple Output Regression Algorithms used where such —W
performed better

Orf

Models poised to cancel the sensory effects of the arm
movement, providing anticipated sensory consequences

Instabilities that could arise in delays from traditional feedback cycle has been partially circumvented

This is akin to how the human cerebellum functions 8



Bio-Inspired Predictive Feedforward

Force Control Model

As impedance control relies on sensory
feedback which are subject to time
delays, instabilities can quickly arise
when controlling forces.

Forward models are therefore crucial to
compensating for this:

6 = D(@)_l[l’ — C(H; 9) — G(6) _]TFext]

The impedance controller could operate
iIndependently of the forward model to
change the impedance (stiffness) of the
limb/arm joints.

DH:q - 6,6,0

|
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J'Fex

T (desired) as the input Inverse model
and the predicted output

Feedback controller

as 077,077,071 & Foyy
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Bio-Inspired Predictive Feedforward

Feedforward Training Scheme
Dataset: e Training data: {(z1,y,), (2, ¥Y2),. .., (xn,y,)}, y; €Y =R"
7 d.o.f WAM Barrett Arm datasets — 12,000 samples for * Predict the vector y = (y1, 1., ym) for a given z.
learning/training

Multiple Targets Prediction Layout: % B B ... K
For a feature vector x, we aim to predict a vector of x, 50 45 14 03 9
responses y using a function h(x): iy 20 25 b U =

h(x) : B ;& 5
X = (x11x21 "'rxp) — Y = (yl'yZ' '"!ym) z, 30 35 19 0.9 2
Algorithm Challenges: z 40 25 1 ¢ !

Appropriate modeling of target dependencies between targets y,,y,, ..., ¥, and a multitude of
multivariate loss functions defined over the output vector, L(y, h(x)) i &
Predictive Feedforward Learning:

Data source: Joint trajectory (6, 6, 8) were sampled from the robot and
corresponding motor torques () measured for each data point — in teaching mode
Algorithms Deployed:

Deep learning multiple-target prediction D. Nguyen-Tuong, M. Seeger, and J. R. Peters. Model Learning with Local
MUItlpIe-Output deC|S|0n tree regreSSIOn Gaussian Process Regression, Advanced Robotics 23 2015-2034, 2009.
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The Predictive Feedforward Results

150 Free-flyer Joint Angle Trajectory Prediction Ly Free-flyer Joint Angle Trajectory Prediction Joai:\a"c Z (:-)a:?j; Angle (:);2'; Angle
e Desired —— Desired Number Test Set Predicted
Las | Predicted || ___ | Predicted /— 0.0814 0.0799
B B 0.0236 0.0222
= 135 1 g 12157
i \\ z 1.754 1.6647
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Data Sample Mumber
J
# Trajectory training dataset randomly split (70-80% Training set) Xglé’/cs'fy m;/cgy

Test Set Predicted
# Trained models evaluated across different set of dataset/trajectory to verify consistency
of performance

# Separate models performed better/best for distinct trajectory parameters (8, 6, 8)

# Models could be built to account for different scenarios, with the availability of more
teaching mode datasets — both for free-space and payload modes
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Practical Limitations Encountered — Transfer Learning

» Given the earth/space kinematics are of the same form but with only changes in parameters, the
two polynomial curve shapes are similar...

mn
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» Transfer learning cannot seem to shift one polynomial curve fit onto the other, but the human
cerebellum can

» Different forward model trainings were required for the terrestrial and space robot’s joint
trajectory predictions to guarantee high accuracy

» Transfer learning lacks the adaptability and requires a large amount of motor models

» There is a need for some offline adaptation or morphing approach between the terrestrial and
spaced-based dynamics 12



Schematic of Approach under RMA

Tramable Module in Red
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Deployment e e o oo = o

# o, contains 3 past joint positions and commanded actions.
# In Adaptation, policy is frozen and SL used to train (¢ ) which uses proprioception and action history (t:t-29; for k=30)
to estimate extrinsics vector z;. During Deployment, the base policy uses Z; estimated and updated online by (¢)
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&0

The Adaptlve Training Results

Episode Reward Vs. Total Step
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(d)

# Results from Base Policy () Training on
the environment with the implemented
RMA algorithms

(a) Average episode reward over training of
1.2 billion steps. Sustained maximized
reward shows that policy successfully
learned and converged.

(b) Episode length over training of 1.2
billion steps
(c) The decreasing entropy losses during

the total training of 1.2 billion steps

(d) The increasing learning performance
during the total training of 1.2 billion
steps

Learning performance shows optim%!
convergence over time 4



The Adaptive Training Results
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(a) (b)

Reward Function Components

# Results from Adaptation Module (¢)
Training on the environment with RMA

(a) The average episode reward during total
training of 1 billion steps
(b) The episode lengths over 1 billion steps

The expected stages of the learning process
and rewards associated [NVIDIA IsaacGym]:

Total reward function r to maximize is given
by (subscript t omitted):

r = 2.0 *dist,ey, + 0.5 * 10t +

0.25 * aroundhandle,opqrqa +

7.5 * openyepwara + 5.0 *

gripperdist_rew - 0.01 = aCtionpenalty
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Adaptive Manipulation Results
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Conclusions

» Predictive neural-net/regression forward models show promising predictions, with low gains
In feedback controller - in simulation

» Developed forward models robust enough to provide a platform for reactive and adaptive
robotic manipulation

» There iIs requirement for some offline adaptation or implementation of morphing approach
between the terrestrial and spaced-based dynamics

» Neural nets transfer learning lacks the adaptability of general intelligence

» Rapid motor adaptation via reinforcement learning provides for adaptive and compliant
space manipulator control transferable from earth-learned simulation
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