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Introduction
Space Manipulators for Debris Removal

The operations may be divided into 3 stages:

➢ Stage (I): Free-space manipulator arm motion to aim for grasping the target 

(position control)

Free-flyer’s position/base stability control by other mounted manipulators

Reaction Wheels/Thrusters deployed for attitude control 

➢ Stage (II): Transitional contact dynamics and passivation of target to grapple and remove.

For grasping, hybrid position/force control and impedance control are most popular 

methods.

➢ Stage (III): On-orbit Servicing Operations (e.g., peg-in-hole task)

Hybrid position/force control, as option.

Impedance control (adopted) – hybrid position/force control does not take into consideration 
the impedance effect between the environment and the robot end effector.
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• But tracking is only feasible with accurate model of the inverse dynamics of  

the system

• Trade-off between the compliancy and reactiveness of the controller against 

accuracy, as effort is being made to tune the gains (higher)

• Machine learning methods have been explored that can learn and improve 

this inverse dynamics approach

𝝉 = 𝑫 𝜽 ሷ𝜽 + 𝑪 𝜽, ሶ𝜽 + 𝑮 𝜽

• Tracking desired trajectory by 

integrating the acceleration policy while 

deploying feedback control to reject the 

modeling errors of the dynamics
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Introduction
Feedback Control Problem in Space Manipulation



Problem Statement: Why Robotic Manipulation 
Approach?

➢ Only robotic manipulation is flexible enough to deal with both

large and small debris

➢ Harpoons and nets generate complex uncontrollable dynamic interactions

➢ Free-flyer spacecraft mounted with dexterous manipulators will

provide controlled interaction with target

➢ Robotic manipulator offers possibility for re-use and on-orbit servicing

➢ Possible to exhibit human-like tactility in robotic grasping of space debris?

➢ Force control modeling to achieve adaptable and compliant behavior - partially known

payload dynamics at times
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Ellery, A. An Introduction to Space Robotics, 
Praxis– Springer Series on Astronomy and 

Space Sciences, 2000.



The Problem of Space Manipulators
Kinematics of Space-based Robot
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➢ The final equation of space robot’s position kinematics

➢ The substituted terms (pre-calculated direct substitution)

➢ Space-based environmental factors/forces are negligible

➢ Fundamentals of transfer learning suggest it should generalize efficiently from earth to space 

via pre-trained networks, both with similar multi-dimensional parabolic and kinematics.



• An efference copy of the motor control signal is 

typically transmitted to an emulator (input-output)

• The efference copy of the motor commands then 

produces a feedforward error compensation

• Biomimetically, a categorized neural network 

system in any control architecture can imitate 

this function of the motor cortex 

• There is a time delay of 40-60ms feeding back the error between the

actual motor outputs and the commanded motor input 

• Explore predictive neural networks as forward model by adopting input-output models
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•

     Bio-Inspired Predictive Feedforward
Brain/Human Level Manipulation



• Traditional control (with feedback signals from sensors) 

has delays which generate instabilities (and high gains)

• We developed at first neural network models capable of 

predicting forward trajectory variables 𝜃𝑓𝑓, ሶ𝜃𝑓𝑓, ሷ𝜃𝑓𝑓
from efference (desired) torque
ሷ𝜃 = 𝐷−1 𝜃 𝜏 − 𝐶 𝜃, ሶ𝜃 − 𝐺 𝜃

• Multiple Output Regression Algorithms used where such

performed better

• Models poised to cancel the sensory effects of the arm 

movement, providing anticipated sensory consequences

• Instabilities that could arise in delays from traditional feedback cycle has been partially circumvented

• This is akin to how the human cerebellum functions 8

      Bio-Inspired Predictive Feedforward
NeuralNet Feedforward Approach



As impedance control relies on sensory 

feedback which are subject to time 

delays, instabilities can quickly arise 

when controlling forces. 

Forward models are therefore crucial to 

compensating for this:

ሷ𝜃 = 𝐷(𝜃)−1 𝜏 − 𝐶 𝜃, ሶ𝜃 − 𝐺 𝜃 − 𝐽𝑇𝐹𝑒𝑥𝑡

The impedance controller could operate 

independently of the forward model to 

change the impedance (stiffness) of the 

limb/arm joints. 
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ሷ𝑞 = 𝑀−1(𝐹𝑒𝑥𝑡 + 𝐵 ሶ𝑞𝑑 − ሶ𝑞 + 𝐾 𝑞𝑑 − 𝑞)

      Bio-Inspired Predictive Feedforward
Force Control Model



    Bio-Inspired Predictive Feedforward
Feedforward Training Scheme

Dataset:

7 d.o.f WAM Barrett Arm datasets – 12,000 samples for 

learning/training

Multiple Targets Prediction Layout:

For a feature vector x, we aim to predict a vector of 

responses y using a function h(x): 

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑝
ℎ(𝑥)

𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚)
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Algorithm Challenges: 

Appropriate modeling of target dependencies between targets 𝑦1, 𝑦2, … , 𝑦𝑚, and a multitude of 

multivariate loss functions defined over the output vector, ℒ(𝑦, ℎ 𝑥 )
Predictive Feedforward Learning:

Data source: Joint trajectory (𝜃, ሶ𝜃, ሷ𝜃) were sampled from the robot and 

corresponding motor torques (𝜏) measured for each data point – in teaching mode

Algorithms Deployed: 

Deep learning multiple-target prediction

Multiple-output decision tree regression  
D. Nguyen-Tuong, M. Seeger, and J. R. Peters. Model Learning with Local                              

Gaussian Process Regression, Advanced Robotics 23 2015–2034, 2009.



The Predictive Feedforward Results

# Trajectory training dataset randomly split (70-80% Training set)

# Trained models evaluated across different set of dataset/trajectory to verify consistency 

of performance

# Separate models performed better/best for distinct trajectory parameters (𝜃, ሶ𝜃, ሷ𝜃)

# Models could be built to account for different scenarios, with the availability of more 

teaching mode datasets – both for free-space and payload modes

Data 243
Joint
Number

Joint Angle
(rad)

Test Set

Joint Angle
(rad)

Predicted

Accuracy

(%)

1 0.0814 0.0799 98.2

2 0.6165 0.5696 92.4

3 0.0236 0.0222 94.1

4 1.754 1.6647 95.4

5 0.2123 0.1990 93.7

6 0.0781 0.0751 96.2

7 0.0869 0.0844 97.1

Data 243
Joint
Number

Joint
Velocity
(rad/s)

Test Set

Joint
Velocity
(rad/s)

Predicted

Accuracy

(%)

1 0.0657 0.0647 98.5

2 -0.1850 -0.1835 99.2

3 -0.1794 -0.1600 89.2

4 -0.0678 -0.0642 95.3

5 -0.0235 -0.0231 98.1

6 0.0478 0.0434 90.8

7 -0.0895 -0.0872 97.411



Practical Limitations Encountered – Transfer Learning

➢ Given the earth/space kinematics are of the same form but with only changes in parameters, the 

two polynomial curve shapes are similar…

➢ Transfer learning cannot seem to shift one polynomial curve fit onto the other, but the human 

cerebellum can

➢ Different forward model trainings were required for the terrestrial and space robot’s joint 

trajectory predictions to guarantee high accuracy

➢ Transfer learning lacks the adaptability and requires a large amount of motor models

➢ There is a need for some offline adaptation or morphing approach between the terrestrial and 

spaced-based dynamics    12



Schematic of Approach under RMA
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Observation 𝑜𝑡 {cur. state}
𝑧𝑡 <-- μ(𝑒𝑡)     {Prop Enc.}
𝑎𝑡 <-- π(𝑜𝑡, 𝑧𝑡)   {action}

Adap module <-> Pred. 
Fwd Model Err {𝑧𝑡 – Ƹ𝑧𝑡}

Base Policy Learning – μ
and π are jointly optimized 
using PPO

# 𝑜𝑡 contains 3 past joint positions and commanded actions.  

# In Adaptation, policy is frozen and SL used to train ( ) which uses proprioception and action history (t:t-29; for k=30) 

to estimate extrinsics vector 𝑧𝑡. During Deployment, the base policy uses Ƹ𝑧𝑡 estimated and updated online by ( )

H. Qi, A. Kumar, R. Calandra, Y. Ma, J. Malik. In-Hand Object Rotation via Rapid Motor Adaptation. In Conference on Robot Learning (CoRL), 2022.



•
The Adaptive Training Results
Base Policy (π)

# Results from Base Policy (π) Training on 

the environment with the implemented 

RMA algorithms

(a) Average episode reward over training of 

1.2 billion steps. Sustained maximized 

reward shows that policy successfully 

learned and converged. 

(b) Episode length over training of 1.2 

billion steps

(c) The decreasing entropy losses during 

the total training of 1.2 billion steps

(d) The increasing learning performance 

during the total training of 1.2 billion 

steps 

Learning performance shows optimal     

convergence over time

(a) (b)

(d)(c) 14



•
The Adaptive Training Results
Adaptation Module ()

# Results from Adaptation Module () 

Training on the environment with RMA 

(a) The average episode reward during total 

training of 1 billion steps

(b) The episode lengths over 1 billion steps 

The expected stages of the learning process 

and rewards associated [NVIDIA IsaacGym]:

Total reward function r to maximize is given 

by (subscript t omitted):      

𝑟 = 2.0 ∗ 𝑑𝑖𝑠𝑡𝑟𝑒𝑤 + 0.5 ∗ 𝑟𝑜𝑡𝑟𝑒𝑤 +
0.25 ∗ 𝑎𝑟𝑜𝑢𝑛𝑑ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑒𝑤𝑎𝑟𝑑 +
7.5 ∗ 𝑜𝑝𝑒𝑛𝑟𝑒𝑤𝑎𝑟𝑑 + 5.0 ∗
𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑑𝑖𝑠𝑡_𝑟𝑒𝑤 – 0.01 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Reward Function Components

(a) (b)
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Adaptive Manipulation Results
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    Conclusions 

➢ Predictive neural-net/regression forward models show promising predictions, with low gains 

in feedback controller - in simulation 

➢ Developed forward models robust enough to provide a platform for reactive and adaptive 

robotic manipulation

➢ There is requirement for some offline adaptation or implementation of morphing approach 

between the terrestrial and spaced-based dynamics

➢ Neural nets transfer learning lacks the adaptability of general intelligence

➢ Rapid motor adaptation via reinforcement learning provides for adaptive and compliant 

space manipulator control transferable from earth-learned simulation 
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Image credit: ESA/Airbus
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